sulphide and 1.94 Å in tetraethyl diphosphine disulphide. The bond angle S-P-P' of 111.1° compares with 112° in dimethyl diphenyl diphosphine disulphide and 113° in tetraethyl diphosphine disulphide.

Table 6. Bond lengths and their standard deviations

Bond	Distance	σ
PP'	2·21 Å	0·004 Å
SP	1.95	0.002
PC(1)	1.82	0.007
PC(4)	1.82	0.007
C(1) - C(2)	1.52	0.011
C(3) - C(4)	1.51	0.010
C(2) - C(3)	1.52	0.012

Table 7	, Bond	angles	and t	heir	standard	deviations
---------	--------	--------	-------	------	----------	------------

Angle	σ
118·7°	0·3°
116.5	0.3
111.1	0.1
105.5	0.1
107.0	0.1
96.6	0.3
104.6	0.2
105.1	0.6
108.5	0.8
108.8	0.7
	Angle 118·7° 116·5 111·1 105·5 107·0 96·6 104·6 105·1 108·5 108·8

The bond lengths and angles in the ring show a regular arrangement. The P-C distances, both of 1.82 Å, are close to the values of 1.82 Å in dimethyl diphenyl diphosphine disulphide and of 1.82 and 1.84 Å in tetraethyl diphosphine disulphide. These values are in close agreement with the value of 1.84 Å obtained from the sum of Pauling's (1960) single bond covalent radii. The ring system is saturated and is consequently puckered, and the bond angles round the carbon atoms are slightly less than the usual tetrahedral value. The inclusion of phosphorus in a heterocyclic ring causes considerable distortion of the tetrahedral environment round the phosphorus, and the bond angle C(1)-P-C(4) is 96.6°. It is surprising that this has no observable effect on the bond order of the P-P and P=S bonds. A large number of intermolecular contacts occur in the range 3.85-4.0Å, but there are no intermolecular contacts below 3.85Å except those involving hydrogen atoms.

Our thanks are due to Dr R.Schmutzler (Loughborough University of Technology) for the provision of samples, to Mr G.S.D.King (Union Carbide European Research Associates) for computer programs for the IBM 1620, and to Dr J.C.Baldwin and Mrs J. Thomas (SRC Atlas Computer Laboratory, Chilton) for their help. One of us (GWG) is indebted to the Science Research Council for financial assistance.

References

- DAUBEN, C. H. & TEMPLETON, D. H. (1955). Acta Cryst. 8 841.
- DUTTA, S. N. & WOOLFSON, M. M. (1961). Acta Cryst. 14, 178.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040.
- Howells, E. R., Phillips, D. C. & Rogers, D. (1950). Acta Cryst. 3, 210.
- PAULING, L. (1960). The Nature of the Chemical Bond, 3rd Ed. Ithaca: Cornell Univ. Press.
- SCHMUTZLER, R. (1964). Inorg. Chem. 3, 421.
- SIM, G. A. (1958). Acta Cryst. 11, 123.
- WHEATLEY, P. J. (1960). J. Chem. Soc. p. 523.

Acta Cryst. (1969). B25, 2131

The Crystal Structure and Absolute Configuration of the N(b)-Methiodide of (-)-Kopsanone

BY B. M. CRAVEN

Crystallography Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, U.S.A.

(Received 13 November 1968)

Crystals of the N(b)-methiodide of the indole alkaloid (-)-kopsanone, $[C_{21}H_{25}N_2O]^+I^-$, are orthorhombic with lattice translations a=13.98, b=17.20, c=7.67 Å, space group $P_{21}2_{12}1$, four formula units per unit cell. The crystal structure has been determined from 1800 three-dimensional X-ray intensity data, collected with an automatic four-circle diffractometer, the absolute configuration being established from the Cu K α anomalous scattering of the iodide ion. Refinement of positional and isotropic temperature factors was by full-matrix least-squares, giving convergence at R=0.08. Hydrogen atom positions were not determined. The results confirm the molecular structure previously proposed on the basis of chemical and spectral data. The heptacyclic molecular structure has a cage-like aliphatic portion, with the piperidine ring D in the chair form. The conformation of the remainder of the molecule and of (-)-kopsanone itself follows from the interlocking nature of the ring fusions.

Introduction

Several families of indole alkaloids with similar molecular structures have been isolated from *Aspidosperma*, *Pleiocarpa, Kopsia* and other genera. The chemistry of these alkaloids has been reviewed by Gilbert (1965). In considering their structural and biosynthetic relationships, (-)-kopsanone is important since it has been

isolated from two different genera (Aspidosperma duckei Hub., A. macrocarpon Mart, Pleicarpa muticao Benth; Ferreira Filho, Gilbert, Kitagawa, Paes Leme & Durham, 1966; Achenbach & Biemann, 1965) and possesses the heptacyclic skeleton of kopsine and other alkaloids which have been isolated from yet a third genus (Kopsia). Kopsanone has also been obtained by pyrolysis of kopsinic acid (Kump, Dugan & Schmid, 1966).

This paper concerns the crystal structure and absolute configuration of the N(b)-methiodide of (-)-kopsanone (I).* The results have already been reported briefly (Craven, Gilbert & Paes Leme, 1968).

1

Experimental

Crystals of kopsanone N(b)-methiodide were supplied by Drs Gilbert and Paes Leme of the Federal University of Rio de Janeiro, Brazil. The crystals are orthorhom-

* The atomic nomenclature in (I) conforms with Gilbert (1965).

bic with lattice parameters $a=13.98\pm0.005$, $b=17.20\pm0.05$ and $c=7.67\pm0.02$ Å, and space group $P2_12_12_1$. The crystal density of 1.62 g.cm⁻³, measured by flota-

Table 2. Atomic parameters with e.s.d.'s

The positional parameters are expressed as fractions of the lattice translations.

	x, $\sigma(x)$	y, $\sigma(y)$	z, $\sigma(z)$	B, $\sigma(B)$
T	0.66765	0.78901	0.8632	3.69 Å 2
•	0.00007	0.00006	0.0001	0.03
N(a)	0.4949	0.4393	0.479	3.4
1 (4)	0.0010	0.0008	0.002	0.2
N(b)	0.5157	0.7084	0.403	2.6
1.(0)	0.0008	0.0007	0.001	0.2
0	0.3504	0.5159	0.146	4.7
U U	0.0009	0.0007	0.002	0.2
C(2)	0.4541	0.5100	0.542	3.1
C(2)	0.0011	0.0009	0.002	0.3
C(3)	0.3575	0.5321	0.002	2.2
C(3)	0.0011	0.0000	0.002	0.3
C(2')	0.3800	0.5416	0.002	0.3
C(3)	0.0012	0.0000	0.271	5.4
C(A)	0.2252	0.6000	0.002	0.3
C(4)	0.0011	0.00099	0.007	3.3
C(5)	0.0011	0.0009	0.002	0.3
C(3)	0.4000	0.0212	0.643	2.9
0(0)	0.0010	0.0008	0.002	0.2
C(6)	0.3821	0.7339	0.694	4.3
	0.0013	0.0010	0.003	0.3
C(7)	0.3769	0.7847	0.540	4.5
~ (2)	0.0013	0.0011	0.003	0.3
C(8)	0.4761	0.7901	0.452	3.4
	0.0011	0.0009	0.002	0.3
C(9')	0.6191	0.7216	0.359	3.3
-	0.0010	0.0008	0.002	0.3
C(10)	0.4677	0.6726	0.249	3.2
	0.0011	0.0009	0.002	0.3
C(11)	0.4841	0.5846	0.274	2.5
	0.0010	0.0008	0.002	0.5
C(12)	0.5214	0.5724	0.464	2.7
	0.0010	0.0008	0.002	0.5
C(13)	0.6161	0.5291	0.481	2.9
	0.0011	0.0008	0.002	0.3
C(14)	0.7116	0.5536	0.206	3.5
	0.0011	0.0009	0.002	0.3
C(15)	0.7847	0.4976	0.206	4.2
	0.0013	0.0011	0.003	0.3
C(16)	0.7651	0.4213	0.491	4.7
	0.0014	0.0011	0.003	0.4
C(17)	0.6668	0.3944	0.478	4∙0
	0.0013	0.0009	0.002	0.3
C(18)	0.5977	0.4517	0.477	3.3
	0.0011	0.0009	0.002	0.3
C(19)	0.2020	0.6218	0.554	2.8
	0.0010	0.0008	0.002	0.2
C(20)	0.4251	0.6001	0.803	4.3
	0.0013	0.0011	0.003	0.3
C(21)	0.4476	0.5160	0.747	3.7
	0.0013	0.0010	0.002	0.3

Table 1. Refinement criteria

Criteria	lst refinement (enantiomer of true structure)	2nd refinement (true structure)
Standard deviation in an observation of unit weight	0.75	0.28
R index, all data	0.106	0.081
R index, omitting unobserved	0.102	0.077
Weighted R index, all data	0.131	0.100
Weighted R index, omitting unobserved	0.125	0.097

B. M. CRAVEN

Table 3. Observed and calculated structure factors The columns listed are k, $10|F_o|$, $10|F_c|$, $10A_c$, $10B_c$.

	1 9 183 229 71 218 4- 11 31 125 25- 12 4- 11 113 12 52 7 14 4- 11 113 12 75 25 74 130 12 76 25 74 307 309 302- 6 13 120 345 123 160 151 127- 34 23 2 163 121 165 164 323 160 35 123 2 129 155 15 6 14 14 3 165 164 120 165 -52 43 76 33 167 165 164 33 164 33 164 34 166 35 164 35 164 35 164 35 165 165 165 165 165 165 165	$ \begin{array}{c} 4 & m^{2}{6} & 7m^{2} $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 3 (cont.)

9 900 Sol1 244-522 6 565 566 186 524-7 7 507 572 117 555-7 9 556 528 122-16 161 264-7 10 2342 276 161 264-7 161 212-258 182-18-7 11 212 2258 182-18-7 163-11 161 151-16 13 100 525 501 14-1 183 181 746-7 150-7 14 88 93 64-7 150-7 183 181 746-7 150-7 183 181 746-7 55-7 34-7 150-7 160-7 183 184 96-7 14-7 140-7 130-7 140-7 120-7 140-7 140-7 140-7 140-7 150-7 140-7 130-7 140-7 140-7 130-7 110-7 130-7 110-7 130-7 140-7 140-7 140-7 <	$ \begin{array}{c} 13 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	15 558 3.44 39- 36- 16 144 153- 13- 17 159 13 37- 18 144 153- 13- 19 145 153- 13- 19 145 153- 13- 19 445 227- 411 1 555 554 340- 437- 17 1647 6545 5540 340- 437- 19 555 554 340- 437- 130 340- 437- 10 525 204- 280 70- 259- 70- 140 731 300 7- 112 132 204- 288 140- 7 7448 455 224- 288 141- 130- 131 303 130- 131 313 314 300- 131 333 50- 170 131 334 309 100-	$ \begin{array}{c} 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

tion in a mixture of carbon tetrachloride and bromoform, is in good agreement with the calculated value (1.62 g.cm⁻³) based on four formula units of needle habit elongated along c, with {120} the prominent form.

A crystal was cut to a size $0.15 \times 0.17 \times 0.30$ mm and $[C_{12}H_{25}N_2O]^+I^-$ per unit cell. The crystals exhibit a mounted with the long edge (c) parallel to the φ axis of

3	343 444	233- 253-	53-1	H V	413 305	427 302	145 56-	402-	5	124 133	45- 0	124	
5	316 334 251 214	237	235-	10	270	268 188	216- 127	159	G	116 113	H= 12 129	35	
7 H	145 142	102-206-	118	12	43• 131	63 176	6l 124-	16-24-	1 2	75 107	18- 94-	106 23-	
" 1 C	124 154	18-	153	14		116	72- н= 3	91-	1	495 573	P= C 121	560-	
11	310 294	14- 24	242-	ĉ	65 644	31	31 678	137	23	219 254 286 312	254 90-	16 298	
13	291 299	118-	275	2	46.	13	9- 447-	5 54-	4	133 155 228 246	157- 39	27- 243-	
• •	102 12	113 4	116-	4	263	275	168-	218	67	81 121	117	31 77-	
1	132 150	17	149-	ę	141	125	43	117-	8	150 183	181-	26-	
3	334 340	207	182	2 12 13	235	245	57-	238	10	60 38	35	16	
5	334 365	346-	116-	10	121	121	33	117-	12	38 33	33-	4-	
ĩ	378 378	375	43	12	42.	23	16-	17	e	42. 38	17	34-	
9	152 167	154-	31	14	86	19	18-	111	2	241 250	205-	143-	
11	172 135	135	14-	ç	315	303	301-	30-	4	297 323	323	1	
13	140 113	32	143	2	345	344	241	266-	6	445 485	484-	42-	
0	155 363	118-	344	4	443	438	187-	346	8	311 310	271	150	
2	119 127 645 652	112-	632-	6	357	346	44	343-	10	235 239	237-	33-	
3	48• 74	64-	33-	8	436	105	68- 94-	379	12	39 98	38	90	
5	132 163 76 74	145-	74-	10	231	208	54-	201-	ç	323 306	106-	287	
7	221 234	237	32	11	157	143	68	96	2	195 183 473 467	132	448-	
9 10	40 83 246 241	3- 65-	82- 232	14	101	93 8 6	69- H3 5	63	3	183 221	120	185-	
11	153 137 273 284	125	272-	C 1	486 346	458 306	445- 245-	82	5	170 183	183-	19-	
с	315 315	H= 10 43-	312	23	328 115	343 117	237	248	7	94 81 159 144	8C 98	10	
1	49 85	54 58-	66-	4	4 16 229	436 205	340- 27-	274-203	9 10	122 111 218 234	32-	218	
3	178 209	208- 9C	26	67	125 167	136 148	75- 51-	111	11 12	164 172	58	172	
5	331 360	353 156-	70	8	17A 133	186	156	102-	c	206 172	2 HI 3 2 33-	168	
7	296 317	240-	129-	1C	173	207	267-	32-	1	142 133	132	14-	
9	182 215	196	88	12	215	224	218	49	3	394 413 105 92	399-	107-	
iĭ	85 117	80-	85-		144	* 6 160	H= 6 15C	58	5	349 380	370	85	
0	272 304	55	299-	i	50 • 97	134	21	132	7	410 430	421-	86-	
2	129 147	110-	96	3	217	240	143	193-	ş	307 28	271	92	
4	153 167	73	150-	Ś	430	420	85-	411	11	143 140	140-	8- 54-	
6	17 112	112-		7	408	476	140	455-	c	1 ²	7 н= 4 7 1C2	383-	
8	87 87	22	84		2 34	300	90-	286	1	156 12	28	122	
4	L= 5	н 12	100-	ii	126	82	21-	79-	3	193 19	0	191-	
1	70 97	69-	68	13	53	35	31	16	5	178 17	114	127	
3	153 168	59	157-	ç	383	413	400	101	7	141 134	132-	23	
5	72 76	67-	37-	2	440	444	439-	67	4	430 3	7 25	28-	
7	248 279 39• 61	2/6	8-	4	2 4 5	308	36.8	2-	11	13c 15	5 65-	140	
0	106 122	H» 13	117-	6	168	105	73-	75	c	44. 40	16	37-	
1	178 222	123	185-	8	233	213	159-	142-	3	153 15	108	113-	
3	145 180	46-	1166	10	189	186	183	33		167 18	5 185-	4- 147	
0	452 488	н∎ С 463	68	11	133 3u7	284	256-	122-	7	202 23	229	45	1
2	386 402	35-	401	0	.113	89	F 8	27-	9	106 10	9 83-	70-	
3	250 262	200	244-	2	230	221	49	243	ii	141 13	5 71	114	
6	397 405 93 126	125-	385	1	270	294	67	281-	¢	110 10	A 4-	108	
78	567 606	122	21-	6	162	146 336	39	336	2	140 12	4 124	13	
10	192 219	90- 97	200	8	178	182	111	248-	4	181 17	6 161-	72	
11 12	125 166	42	161- 43-	10	149	144	48-	120	6	64 8	4 75	39	ł
13 14	40• 56	136	56- 36	11	123	.= 6	۰* ۹	107	8	59 12	c 120-	6	
15	104 94 L= 6	36- ∺= 1	87	C 1	315	341	19 325	101	10	100 6	7 60	30	
0	631 570 319 344	557 342-	124 28	3	1C4 204	217	174-	83-	ç	43• 6	6 13	64-	
23	447 461 394 441	462- 316	64 316	5	165	139	10-	139	2	235 20	3 181-	91-	
4 5	337 375 252 241	372	42- 240-	t i	155	163	51 31	154-21	4	207 23	0 225	47	
67	209 186	6 - 66	186 144	8	127	127	45- 168-	63-	6	213 23	7 234-	35-	
8	186 199	153-	12H- 145-	10	121	110 - 6	24 н= 10	108-	8	150 15 218 23	4 155 6 212	34 104	1
10	224 234	222	75 17	0	.79 431	2H 79	20- 75-	14- 27-	'	161 15 L=	8 150- 7 H= 8	48	
12	299 304	242-	83- 36	23	169 237	183 247	141 179	117- 17C	l î	193 25 97 14	3 78- 2 64-	241 127	
14	288 260	254	24 82-	5	233 124	268 162	68- 24	260 159-	3	283 28 162 18	3 47 2 26	279-	
c	430 412	411-	34-	67	240	280	1C5 29-	259- 105	5	188 19 108 13	5 35- 3 132-	192 14	ĺ
1	275 251	248	41 • 165	6	185	230	49- н= 11	224	9	89 6 39• 5	7 5- 1 38	66- 33	
3	245 314	228-	223	0	184	224	214-	67- 60	c	65 IO	7 H∎ 9 1 23-	98	
5	451 5Cu	211	454- 37H	2	169	202	155	1 10	1 2	95 7 89 13	3 66 6 3-	30 136-	
ž	153 174	50	167	1 4	170	148	143-	35-	1 3	221 24	6 227-	94-	L

a four-circle automatic diffractometer. With Cu $K\alpha$ radiation and a scintillation counter detector, 1800 non-symmetry related reflections were measured, con-

Table 3 (cont.)

4	110 73	56-	46	1	206	202	58-	143	2	173	189	113	151
5	194 228	221	58	- 13	144	127	70	104-	3	173	162	161	18
6	36 27	26	5-	9	153	151	9	151-	4	104	127	29-	124-
	L= 7	H= 10			ι	× 8	н= 2		5	97	106	162-	30-
0	297 318	70	310-	0	167	208	204-	43-	6	149	178	76-	161
1	89 122	1-	121	1	286	302	289	88	7	39•	77	64-	43-
2	150 219	36-	216	2	154	144	144	7-		ι	- 8	H= 5	
	L. 8	н= 0	1	3	216	218	211-	56-	0	187	194	189	43
0	449 443	435	85	4	154	183	125-	133	1	82	82	46	68
1	42+ 65	14	63-	5	169	135	116	70	2	181	211	267-	42
ż	136 186	171-	74-	6	176	175	69	161-	3	135	133	30-	130-
3	169 206	37-	203	7	420	83	20	80-	4	149	165	126	107-
4	213 215	210	45	8	157	165	10-	164	5	157	185	41-	180
5	184 221	50	215-		ι	- 8	⊦= 3		é	122	104	41-	95
6	92 9	5	8	с	147	118	118-	1		L	- 8	H= 6	
7	101 112	47-	100	1	226	237	213-	103-	С	204	227	215	72
8	140 143	141-	27-	2	125	136	34-	132-	1	38+	40	11-	39-
9	186 189	36	186-	3	167	177	172	39	3	91	134	3	134
	L= 8	н. 1		4	256	292	42-	277	4	134	154	130	82
е	325 312	308-	50-	5	ธ7	97	93-	28-	5	182	191	54	183-
1	63 55	41	29	6	247	26C	58	254-		L	. 8	H# 7	
2	139 155	112	108	7	41•	71	63-	34-	0	109	107	99-	40-
3	252 277	195-	197	8	206	268	ć1-	261	1	59	97	67	70-
4	105 110	45-	100-	1	ι	• 8	H= 4		2	120	133	67	115
5	244 261	100	241-	c	135	144	139-	38-	3	117	160	92-	131
6	71 77	1-	77	1	242	283	273-	73-					

sisting of all reflections with $\sin \theta/\lambda < 0.59 \text{ Å}^{-1}$ for which h,k and l were positive with respect to a righthanded crystal axial system. Integrated intensities were obtained from $\theta/2\theta$ scans of 2° in 2θ at a scanning rate of 2° min⁻¹, with background counts of 20 sec at each scan limit. There were 110 reflections for which the integrated intensity, I, was less than 1.5σ (I). These were assigned values of I equal to $0.5 \sigma(I)$. As a result of X-irradiation, the crystal slowly turned yellow and showed a uniform overall decrease by ten per cent in the integrated intensities of three standard reflections by the end of the data collection. Scaling factors were applied to compensate for this effect. X-ray absorption factors were not applied.

The determination of the absolute configuration was confirmed by intensity measurements with Cu $K\alpha$ radiation made with the use of a second crystal, similar in size to the first, but with a shape closely approximating *mmm* symmetry in order to minimize differences in the X-ray absorption factors for the Bijvoet pairs. Integrated intensities of reflections hkl, $h\bar{k}l$ of form $\{hkl\}$ and reflections $h\bar{k}l$, $h\bar{k}l$ of the form $\{h\bar{k}\bar{l}\}$ were measured. At this time, the crystal structure had been determined and it was considered sufficient to measure two Bijvoet pairs for which the intensity differences $[I(hkl)-I(h\bar{k}\bar{l})]$ were predicted to be large and of opposite sign and a third pair for which the difference should be small. The results are shown in Table 4.

The structure determination and parameter refinement

The iodide ion positions were determined from the three Harker sections $u=\frac{1}{2}$, $v=\frac{1}{2}$, $w=\frac{1}{2}$. All non-hydrogen atoms were recognized in the three-dimensional Fourier synthesis of electron density, by use of the iodide phases.

The atomic positional parameters and isotropic thermal parameters (initially assumed to be 3.5 Å² for all atoms), were refined by a full-matrix least-squares procedure. The atomic scattering factors, including the X-ray dispersion effect for the iodine atoms ($\Delta f' = -1.2$ $\Delta f'' = 7.0$ for Cu K α radiation) were taken from International Tables for X-ray Crystallography (1962). The estimated standard deviation in an observed structure amplitude, |F|, was assumed to be

$$\sigma(F) = |F_{\min}| + 0.07|F|,$$

where $|F_{\min}|$ is the average value of the structure amplitude assigned to unobservably weak reflections.

The criteria of the refinement process are shown in Table 1. The first refinement converged after three cycles of least squares. The atomic positional parameters were then inverted with respect to the crystallographic origin, and the resulting enantiomeric structural parameters were then refined with an additional two cycles. The improved agreement between calculated and observed structure factors in the second refinement suggests that these parameters, when referred to a righthanded set of crystal axes, correspond to the correct absolute configuration. This absolute configuration was confirmed by comparison of the observed and calculated intensity differences [I(hkl)-I(hkl)] as shown in Table 4. The final atomic parameters with e.s.d.'s from the second refinement are listed in Table 2. The corresponding observed and calculated structure factors are listed in Table 3. A three-dimensional electron density difference map was calculated, with the use of the atomic parameters shown in Table 2. The most prominent features in this map were at the iodine atom position. These could be interpreted as the effects of anisotropic thermal motion of the iodine atom with perhaps some contribution from systematic errors in the intensity data arising from progressive radiation damage in the crystal. Hydrogen atom positions were not determined.

Table 4. Determination of absolute configuration

			$(I_{hkl}-I_{h})$	ki)/Inki
h	k	l	calc.*	obs.
1	1	1	+0.27	+0.22
1	3	3	-0.12	-0.25
9	1	2	+0.05	+0.05

* These values are based on the atomic parameters listed in Table 2, referred to a right-handed crystal axial system.

Description of the structure

The bond lengths and angles within the molecule are listed in Table 5. These may be referred to the molecular framework shown in Fig.1. Calculation of best least-squares planes (Table 6) shows that both rings A and B of the dihydroindole moiety are distorted from planarity as a result of the steric requirements of fusion with the cage-like aliphatic part of the molecule. In ring A, only atom C(13) is significantly out of plane. The five-membered ring B, containing nitrogen atom N(a) is approximately in the envelope form, with atom C(2) at the flap position A similar conformation is found for the cyclopentanone ring, in which the carbon atom C(2) is again at the flap position. The atoms of the carbonyl group and the two adjacent carbon atoms are coplanar (Table 6). The ring junctions in this molecule are all cisoid. Furthermore, all rings share three edges with other rings, except for rings B and D, which share only two, and ring A, which shares only one. The molecule is thus rigid, except for ring D, which could reasonably be expected to be in either the chair or skew-boat conformation (Eliel, Allinger, Angyal & Morrison, 1965). The chair conformation is observed.

The packing in the crystal structure is shown in Fig.2. A notable feature is the overlap of the aromatic rings A, which lie close to the planes $z=0, \frac{1}{2}$. It might be supposed that this would be an attractive interaction of some importance in the crystal structure. However, the separation of aromatic ring planes (c/2 or 3.83 Å) is considerably greater than the van der Waals separation (3.4 Å) as a result of the packing requirements of the bulky cage-like aliphatic portion of the molecule. Observed intermolecular distances are listed in Table 7.

Each iodide ion is enclosed so that it is within a 5 Å distance of twenty-seven atoms from eight different molecular ions. The shortest of these distances (3.65 Å)is to a nitrogen atom N(a) along a line which is approximately in the expected direction for the N(a)-H bond. This distance is considerably shorter than the sum (4.3 Å) of the N–H bond length (assuming a value) of 0.9 Å), the van der Waals radius for hydrogen (1.2 Å), and the ionic radius for iodine (2.2 Å). Thus, even allowing for some non-collinearity of the atoms $N(a)-H...I^{-}$, there is evidence of an attractive interaction, which might be called a hydrogen bond. In the crystal structures of the N(b)-methiodide of the alkaloid cleavamine (Camerman & Trotter, 1964) and also in hexamminecobalt(III) triiodide (Barnet, Craven, Freeman, Kime & Ibers, 1966) there are even shorter N-H...I⁻ distances (3.41, 3.46 Å, respectively) although in these cases also, the hydrogen atom positions were not experimentally determined.

In kopsanone methiodide, there are no significant dipole-dipole interactions between carbonyl groups similar to those described by Bolton (1964). The C...O

Fig.1. Molecular framework of the kopsanone ion, showing the absolute configuration.

Table 5(a). Bond lengths and angles

The average e.s.d.'s in bond lengths and angles are 0.02 Å and 1.5° respectively.

		(a) Bond ler	ngths		
N(a) - C(2)	1·43 Å	C(5) - C(19)	1·57 Å	C(12)-C(13)	1·52 Å
C(2) - C(3)	1.54	C(5) - C(20)	1.53	C(12) - C(19)	1.54
C(2) - C(12)	1.55	C(6) - C(7)	1.47	C(13) - C(14)	1.41
C(2) - C(21)	1.58	C(7) - C(8)	1.55	C(13) - C(18)	1.36
C(3) - C(3')	1.53	C(8) - N(b)	1.56	C(14) - C(15)	1.40
C(3) - C(4)	1.53	N(b) - C(9')	1.50	C(15) - C(16)	1.35
C(3') = 0	1.19	N(b) - C(10)	1.49	C(16) - C(17)	1.45
C(3') - C(11)	1.51	N(b) - C(19)	1.52	C(17) - C(18)	1.38
C(4) = C(5)	1.56	C(10)-C(11)	1.54	C(18) - N(a)	1.45
C(5) - C(6)	1.51	C(11)-C(12)	1.56	C(20) - C(21)	1.54

Table 5(b) Bond lengths averaged according to bond type

Trigonally and tetrahedrally bonded atoms are denoted by 'trig' and 'tetr'.

Туре	No. of bonds	А	verage bond length		R.m.s. deviation
C(tetr) - C(tetr)	14		1.54 Å		0.007 Å
C(tetr) - C(trig)	3		1.52		0.002
C(trig) = C(trig)	6		1.40		0.012
N(tetr)-C(tetr)	4		1.52		0.014
		(c) Bond angles	5		
C(18) - N(a) - C(2)	106°	C(6) - C(5) - C(19)	108°	C(11)-C(12)-C(19)	105°
N(a) - C(2) - C(3)	115	C(6) - C(5) - C(20)	112	C(2) - C(12) - C(13)	99
N(a) - C(2) - C(12)	103	C(19) - C(5) - C(20)	101	C(2) - C(12) - C(19)	111
N(q) - C(2) - C(21)	115	C(5) - C(6) - C(7)	111	C(13) - C(12) - C(19)	120
C(3) - C(2) - C(12)	102	C(6) - C(7) - C(8)	110	C(12) - C(13) - C(14)	134
C(3) - C(2) - C(21)	110	N(b) - C(8) - C(7)	112	C(12)-C(13)-C(18)	108
C(12) - C(2) - C(21)	112	C(8) - N(b) - C(9')	105	C(14) - C(13) - C(18)	118
C(2) - C(3) - C(3')	99	C(8) - N(b) - C(10)	114	C(13)-C(14)-C(15)	119
C(2) - C(3) - C(4)	108	C(8) - N(b) - C(19)	112	C(14) - C(15) - C(16)	121
C(3') - C(3) - C(4)	112	C(9') - N(b) - C(10)	109	C(15)-C(16)-C(17)	121
C(3) - C(3') - C(11)	107	C(9') - N(b) - C(19)	110	C(16) - C(17) - C(18)	116
C(3) - C(3') - O	126	C(10) - N(b) - C(19)	108	C(17) - C(18) - C(13)	124
C(1) - C(3') - O	127	N(b) - C(10) - C(11)	104	C(17) - C(18) - N(a)	121
C(3) - C(4) - C(5)	113	C(10) - C(11) - C(3')	110	C(13) - C(18) - N(a)	109
C(4) - C(5) - C(6)	114	C(10) - C(11) - C(12)	107	C(5) - C(19) - N(b)	114
C(4) = C(5) = C(19)	115	C(3') - C(11) - C(12)	104	C(5) - C(19) - C(12)	108
C(4) - C(5) - C(20)	106	C(11) - C(12) - C(2)	105	N(b) - C(19) - C(12)	103
		C(11) - C(12) - C(13)	116	C(5) - C(20) - C(21)	110
		<pre> / · · · · · · · · · · · · · · · · ·</pre>		C(20)-C(21)-C(2)	111

Table 6. Best least-squares planes

(i) Equations of the planes

The equations of these planes are in the form AX + BY + CZ = D, referred to the crystallographic axes, with X, Y, Z in Å units. Plane 1: atoms of the benzene ring, except for C(13).

Plane 2: atoms of the carbonyl group, with adjacent atoms.

Plane	Α	В	С	D
1	-0.06137	-0.06663	0.99588	2.61843
2	-0.50219	0.86129	-0.07732	5.10548

(ii) Distances of atoms from the planes

For each plane, column (a) lists distances from the plane of atoms which form the plane, and column (b) lists distances from the plane of atoms which do not form the plane. The e.s.d. in these distances is approximately 0.015 Å.

Plane (1)		Plane (2)		
$(a) \\ C(14) & -0.00 \text{ Å} & N \\ C(15) & 0.01 & C \\ C(16) & -0.01 & C \\ C(17) & 0.01 & C \\ C(17) & 0.01 & C \\ C(18) & -0.00 & C \\ (18) & -0.00 & C \\ C(18) & -0.00 & $	(b) (a) 0.11 Å (13) -0.08 (12) -0.18 (2) 0.54	$\begin{array}{c} (a) \\ C(11) & -0.01 \text{ Å} \\ C(3') & 0.02 \\ C(3) & -0.01 \\ O & -0.01 \end{array}$	$(b) \\ C(12) - 0.56 \text{ Å} \\ C(2) - 1.06$	

intermolecular distance is long (4.53 Å), although in Fig. 2 the projected distance is deceptively short.

Discussion

The present crystal structure determination of the N(b)methiodide confirms the molecular structure for (-)kopsanone determined from chemical and spectral data (Ferreira Filho *et al.*, 1966; Kump, *et al.*, 1966) and the absolute configuration which was proposed on the basis of a chemical correlation with minovincine (Kump *et al.*, 1966).

The determination of absolute configuration is of more than usual importance for Aspidosperma and related alkaloids, because of the existence of naturally occurring enantiomeric molecular structures. Quebrachamine and pyrifolidine are among those Aspidosperma alkaloids for which enantiomers have been isolated from different plant sources (see references given by Djerassi, Archer, George, Gilbert & Antonaccio, 1961). Wenkert (1962) has suggested mechanisms for indole alkaloid biosynthesis that involve a non-asymmetric intermediate. Although this can explain the observed enantiomerism, the conditions which result in the occurrence of a particular enantiomer in a particular plant are not yet understood.

From chemical and optical rotatory dispersion data, assignments of absolute configuration have been made (Klyne, Swan, Bycroft, Schumann & Schmid, 1965), which may be extended to include most of the known *Aspidosperma* and related alkaloids. However, except in the present case and in the recent work on the N(b)methiodide of (-)-aspidospermine* (Craven & Zacharias, 1968), the X-ray anomalous scattering method has not previously been used to determine the absolute configuration of an alkaloid closely related to the naturally occurring Aspidosperma series. These X-ray results confirm the previous assignments in showing that, except at carbon atom C(2), the N(b)-methiodides of (-)-kopsanone (I) and (-)-aspidospermine (II) have opposite configurations at each of the five asymmetric centers which they have in common. The difference in absolute configuration at carbon atom C(2) in (-)kopsanone with respect to (+)-aspidospermine indicates that these compounds may be related by the cyclization at atom C(2) of the ethyl substituents at carbon atom C(5) in the latter compound.

Smith & Wrobel (1960) have given some evidence that the conformation of aspidospermine is different from that which is observed in the crystal structure of the N(b)-methiodide (Mills & Nyburg, 1960) and that the *N*-methylation reaction of aspidospermine involves an 'umbrella'-type inversion of configuration about the nitrogen atom N(b). Such behaviour is unlikely in the case of kopsanone because of the rigidity of the cagelike aliphatic portion of the molecule. Three of the bonds in the piperidine ring *D* are locked in positions so that flexing of this ring in the process of nitrogen atom inversion involves considerable angular strain. The de-

* The crystal structure was reported by Mills & Nyburg (1960), but the absolute configuration was not determined.

Fig.2. The crystal structure of kopsanone N(b)-methiodide. The positive sense of the crystal axis c is towards the viewer. The atomic parameters of Table 2 refer to the molecule in the center. The presumed $N(a)H\cdots I^-$ hydrogen bonds are shown as dotted lines.

Table 7. Intermolecular distances

The interatomic distances listed include all those which are less than 0.2 Å in excess of the sum of the appropriate ionic or van der Waals radii (2.2 Å for I⁻, 2.0 Å for tetrahedrally bonded carbon, 1.7 Å for trigonally bonded carbon, 1.4 Å for oxygen; Pauling, 1960). Distances which are long by this criterion are indicated by *.

Subscripts $(a, b, c \dots)$ indicate that the right-hand member of each pair of atoms is related to the atom listed in Table 2 by one of the following symmetry operations:

$\begin{array}{ccc} a: & 1-x \\ b: & \frac{1}{2}+x \\ c: & x \\ d: & 3 \end{array}$	$\frac{1}{2} + y \qquad \frac{3}{2} - z$ $\frac{3}{2} - y \qquad 1 - z$ $y \qquad 1 + z$ $1 + z$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{ccc} a & \frac{1}{2} - x \\ e & 1 - x \end{array}$	$-\frac{1}{2} + y$ $\frac{3}{2} - z$	<i>j</i> : $\frac{1}{2} - x$ 1 <i>y</i> $-\frac{1}{2} + z$	
$d: \frac{1}{2} - x$ $e: 1 - x$ $I^{-} \cdots \cdot N(a)_{a}$ $\cdots \cdot C(3)_{a}$ $\cdots \cdot C(4)_{b}$ $\cdots \cdot C(6)$ $\cdots \cdot C(9')_{c}$ $\cdots \cdot C(9')_{c}$ $\cdots \cdot C(10)_{b}$ $\cdots \cdot C(17)_{a}$ $\cdots \cdot C(17)_{a}$ $\cdots \cdot C(19)$ $\cdots \cdot C(15)_{g}$ $C(7) \cdots C(15)_{g}$ $C(7) \cdots C(6)_{b}$ $\cdots \cdot C(7)_{b}$ $\cdots \cdot C(7)_{b}$ $\cdots \cdot C(7)_{b}$ $\cdots \cdot C(15)_{a}$ $C(11) \cdots C(20)_{h}$ $\cdots \cdot C(15)_{a}$ $C(13) \cdots C(15)_{a}$ $C(13) \cdots C(15)_{a}$ $C(14) \cdots C(15)_{a}$ $\cdots C(15)_{a}$	$ \begin{array}{r} 1 - y & \frac{1}{2} + z \\ -\frac{1}{2} + y & \frac{3}{2} - z \\ 3.65 \text{ Å (hydrogen bond)} \\ 4.40 \\ 4.16 \\ 4.30 \\ 4.14 \\ 4.34 \\ 4.03 \\ 4.09 \\ 4.33 \\ 3.86 \\ 4.01 \\ 4.03 \\ 4.03 \\ 4.01 \\ 4.03 \\ 4.31 \\ 3.98 \\ 4.14 \\ 4.34 \\ 3.78 \\ 3.69 \\ 4.03 \\ 4.01 \\ 4.03 \\ 4.31 \\ 3.98 \\ 4.14 \\ 4.34 \\ 3.78 \\ 3.69 \\ 4.03 \\ 4.09 \\ 3.69 \\ 4.33 \\ 3.71 \\ 4.24 \\ 3.92 \\ 3.63 \\ 3.93 \\ 3.94 \\ 3.76 \\ 3.92 \\ 3.94 \\ 3.76 \\ 3.92 \\ 3.92 \\ 3.92 \\ 3.94 \\ 3.76 \\ 3.92 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.65 (hydrogen bond) 4.22* 3.34* 4.40 3.76 4.12* 3.38 4.16 3.78 3.80 4.30 3.69 3.63 3.76* 3.99* 4.03* 3.86 3.79 4.01 4.06* 4.79* 4.03 3.76 3.71 3.18 4.24* 3.35 3.34*
$C(15)\cdots C(13)_{a}$ $\cdots C(14)_{i}$ $\cdots C(14)_{a}$	3·92* 3·94* 3·93*	$\cdots C(4)_{j}$ $\cdots C(20)_{n}$ $\cdots C(21)_{n}$	3·18 3·35
$ \cdots C(15)_i \\ \cdots C(15)_d \\ \cdots C(16)_d $	3·96* 3·96* 4·03*		

tailed conformation of (-)-kopsanone thus follows from that of the N(b)-methiodide, as described in the previous section and as shown in Fig.1.

Dr Benjamin Gilbert of the Federal University of Rio de Janeiro, Brazil, and Drs Jeffrey and Zacharias of the University of Pittsburgh took part in helpful discussions. The programs used for IBM 1620 and 7090 computers were written by Dr R.Shiono.

References

- ACHENBACH, A. & BIEMANN, K. (1965). J. Amer. Chem. Soc. 87, 4944.
- BARNET, M. T., CRAVEN, B. M., FREEMAN, H. C., KIME, N. E. & IBERS, J. A. (1966). *Chem. Comm.* p. 307.
- BOLTON, W. (1964). Nature, Lond. 201, 987.
- CAMERMAN, N. & TROTTER, J. (1964). Acta Cryst. 17, 384.
- CRAVEN, B. M., GILBERT, B. & PAES LEME, L. A. (1968). Chem. Comm. p. 955.
- CRAVEN, B.M.& ZACHARIAS, D.E. (1968). Experientia, 24, 770.

- DJERASSI, C., ARCHER, A. A. P. G., GEORGE, T., GILBERT, B. & ANTONACCIO, L. D. (1961). *Tetrahedron*, 16, 212.
- ELIEL, E. L., ALLINGER, N. L., ANGYAL, S. J. & MORRISON, G. A. (1965). Conformational Analysis. New York: Interscience.
- FERREIRA FILHO, J. M., GILBERT, B., KITAGAWA, M., PAES LEME, L. A. & DURHAM, LOIS J. (1966). *J. Chem. Soc.* (C), p. 1260.
- GILBERT, B. (1965). In *The Alkaloids*, Vol. VIII, Ch. 14. Ed. R. H. F. MANSKE. New York: Academic Press.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- KLYNE, W., SWAN, R. J., BYCROFT, B. W., SCHUMANN, D. & SCHMID, H. (1965). *Helv. Chim. Acta*, 48, 443.
- KUMP, C., DUGAN, J. J. & SCHMID, H. (1966). Helv. Chim. Acta, 49, 1237.
- MILLS, J. F. D. & NYBURG, S. C. (1960). J. Chem. Soc. p. 1458.
- PAULING, L. (1960). The Nature of the Chemical Bond, 3rd ed., Ithaca: Cornell Univ. Press.
- SMITH, G. F. & WROBEL, J. T. (1960). J. Chem. Soc. p. 1463.
- WENKERT, E. (1962). J. Amer. Chem. Soc. 84, 98.